AN INTELLIGENT METAHEURISTIC BINARY PIGEON OPTIMIZATION-BASED FEATURE SELECTION AND BIG DATA CLASSIFICATION IN A MAPREDUCE ENVIRONMENT

An Intelligent Metaheuristic Binary Pigeon Optimization-Based Feature Selection and Big Data Classification in a MapReduce Environment

An Intelligent Metaheuristic Binary Pigeon Optimization-Based Feature Selection and Big Data Classification in a MapReduce Environment

Blog Article

Big Data are highly effective for systematically extracting and analyzing massive data.It can be useful to manage data proficiently over the conventional beetroot birkenstock data handling approaches.Recently, several schemes have been developed for handling big datasets with several features.

At the same time, feature selection (FS) methodologies intend to eliminate repetitive, noisy, and unwanted features that degrade the classifier results.Since conventional methods have failed to attain scalability under massive data, the design of new Big Data classification models is essential.In this aspect, this study focuses on the design of metaheuristic optimization based on big data classification in a MapReduce (MOBDC-MR) environment.

The MOBDC-MR technique aims to choose optimal features and effectively classify big data.In addition, the MOBDC-MR technique involves the design of a binary pigeon optimization algorithm (BPOA)-based FS technique to reduce the complexity and increase the accuracy.Beetle antenna search (BAS) with long short-term memory (LSTM) model is employed for big data classification.

The presented MOBDC-MR technique has been realized on Hadoop with the MapReduce programming model.The effective performance of the MOBDC-MR technique was validated using a benchmark dataset and the results were investigated under several u60 hisense price measures.The MOBDC-MR technique demonstrated promising performance over the other existing techniques under different dimensions.

Report this page